Complexity of convex optimization using geometry-based measures and a reference point
نویسندگان
چکیده
منابع مشابه
Complexity of convex optimization using geometry-based measures and a reference point
Our concern lies in solving the following convex optimization problem: GP : minimizex cTx s.t. Ax = b x ∈ P, where P is a closed convex subset of the n-dimensional vector space X. We bound the complexity of computing an almost-optimal solution of GP in terms of natural geometry-based measures of the feasible region and the level-set of almost-optimal solutions, relative to a given reference poi...
متن کاملComplexity of Convex Optimization Using Geometry-based Measures and a Reference Point 1
Our concern lies in solving the following convex optimization problem: GP : minimizex cTx s.t. Ax = b x ∈ P, where P is a closed convex subset of the n-dimensional vector space X. We bound the complexity of computing an almost-optimal solution of GP in terms of natural geometry-based measures of the feasible region and the level-set of almost-optimal solutions, relative to a given reference poi...
متن کاملOn convex complexity measures
Khrapchenko’s classical lower bound n2 on the formula size of the parity function f can be interpreted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f−1(0) × f−1(1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O(n2) and show that several measures considered fo...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2004
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-003-0435-1